Autonomous motion of metallic microrods propelled by ultrasound.

نویسندگان

  • Wei Wang
  • Luz Angelica Castro
  • Mauricio Hoyos
  • Thomas E Mallouk
چکیده

Autonomously moving micro-objects, or micromotors, have attracted the attention of the scientific community over the past decade, but the incompatibility of phoretic motors with solutions of high ionic strength and the use of toxic fuels have limited their applications in biologically relevant media. In this letter we demonstrate that ultrasonic standing waves in the MHz frequency range can levitate, propel, rotate, align, and assemble metallic microrods (2 μm long and 330 nm diameter) in water as well as in solutions of high ionic strength. Metallic rods levitated to the midpoint plane of a cylindrical cell when the ultrasonic frequency was tuned to create a vertical standing wave. Fast axial motion of metallic microrods at ~200 μm/s was observed at the resonant frequency using continuous or pulsed ultrasound. Segmented metal rods (AuRu or AuPt) were propelled unidirectionally with one end (Ru or Pt, respectively) consistently forward. A self-acoustophoresis mechanism based on the shape asymmetry of the metallic rods is proposed to explain this axial propulsion. Metallic rods also aligned and self-assembled into long spinning chains, which in the case of bimetallic rods had a head-to-tail alternating structure. These chains formed ring or streak patterns in the levitation plane. The diameter or distance between streaks was roughly half the wavelength of the ultrasonic excitation. The ultrasonically driven movement of metallic rods was insensitive to the addition of salt to the solution, opening the possibility of driving and controlling metallic micromotors in biologically relevant media using ultrasound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors.

Bimetallic gold-ruthenium microrods are propelled in opposite directions in water by ultrasound and by catalytic decomposition of hydrogen peroxide. This property was used to effect reversible swarming, to stall and reverse autonomous axial propulsion, and to study the chemically powered movement of acoustically levitated microrods.

متن کامل

An Approach for Operation Depth Reduction of an Underwater Glider Propelled by Ocean Thermal Energy

The underwater Gliders are a kind of autonomous vehicles that have a special role in ocean surveys which demand continuous monitoring and long endurance. Because of low energy consumption and long endurance, these vehicles are favorite for these missions. Among this, a type of gliders can harvest ocean thermal energy, causing significant endurance increase. These vehicles need at least 680 mete...

متن کامل

Active particles in complex and crowded environments

Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biologic...

متن کامل

Design, Evaluation and Prototyping of a New Robotic Mechanism for Ultrasound Imaging

This paper presents a new robotic mechanism for ultrasound imaging. The device is placed on a patient's body by an operator, and an ultrasound expert controls the motions of the device to obtain ultrasound images. The paper focuses on the robotic mechanism that performs ultrasound imaging. The design of the mechanism is based on two approaches to produce center of motion for an ultrasound probe...

متن کامل

An automated time and hand motion analysis based on planar motion capture extended to a virtual environment

In the context of industrial engineering, the predetermined time systems (PTS) play an important role in workplaces because inefficiencies are found in assembly processes that require manual manipulations. In this study, an approach is proposed with the aim to analyze time and motions in a manual process using a capture motion system embedded to a virtual environment. Capture motion system trac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2012